MATH 245 S22, Exam 2 Solutions

- 1. Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive Existence Theorem The Proof by Contradiction Theorem says that, for any propositions p, q, if $p \wedge \neg q \equiv F$, then $p \to q$ is true. The Nonconstructive Existence Theorem says that, if $(\forall x \in D, \neg P(x)) \equiv F$, then $\exists x \in D, P(x)$ is true.
- 2. Carefully define the following terms: Proof by Shifted Induction, Big Omega (Ω) For some $s \in \mathbb{Z}$ and some predicate P(x) (with domain \mathbb{Z}), to prove $\forall x \in \mathbb{Z}$ with $x \geq s$, P(x)by Shifted Induction, we must (a) prove P(s); and (b) prove $\forall x \in \mathbb{Z}$ with $x \geq s, P(x) \rightarrow s$ P(x+1). Given two sequences a_n and b_n , we say that $a_n = \Omega(b_n)$ if $\exists n_0 \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \in \mathbb{N}$ with $n \ge n_0$, we have $M|a_n| \ge |b_n|$.
- 3. Let $x \in \mathbb{R}$. Use cases to prove that $|x 1| + |x + 1| \ge x$. METHOD 1: We break into three cases, based on whether $x < -1, -1 \le x \le 1$, or 1 < x. Case x < -1: $|x - 1| + |x + 1| = -(x - 1) - (x + 1) = -2x \ge 2 > -1 > x$. Case $-1 \le x \le 1$: $|x - 1| + |x + 1| = -(x - 1) + (x + 1) = 2 \ge 1 \ge x$. Case 1 < x: |x - 1| + |x + 1| = (x - 1) + (x + 1) = 2x > x. (the last since x + x > x + 0).

METHOD 2: We break into three cases, based on whether $x < 0, 0 \le x \le 1$, or 1 < x. Case x < 0: $|x - 1| + |x + 1| \ge 0 > x$. (the first since every absolute value is ≥ 0). Case $0 \le x \le 1$: $|x - 1| + |x + 1| \ge 0 + (x + 1) \ge x$. (the first since $|x - 1| \ge 0$). Case 1 < x: same as in method 1.

4. Prove or disprove: $\forall x \in \mathbb{Z}, \ !y \in \mathbb{Z} \ x = y^3$.

The statement is true. Let $x \in \mathbb{Z}$ be arbitrary. Suppose $y, z \in \mathbb{Z}$ with $x = y^3$ and $x = z^3$. Now $y^3 = x = z^3$. Taking cube roots, we get y = z. [Note that cube roots are unique in \mathbb{R}]

5. Prove that for all $n \in \mathbb{N}$, we must have $\sum_{i=0}^{n} (2i-1) = n^2 - 1$.

Base case is n = 1: $\sum_{i=0}^{1} (2i-1) = (2 \times 0 - 1) + (2 \times 1 - 1) = 0$, while $1^2 - 1 = 0$. Now, let $n \in \mathbb{N}$ be arbitrary, and assume that $\sum_{i=0}^{n} (2i-1) = n^2 - 1$. Adding 2n + 1 to both sides, we get $2n + 1 + \sum_{i=0}^{n} (2i-1) = n^2 - 1 + 2n + 1$. We simplify to get $\sum_{i=0}^{n+1} (2i-1) = (n+1)^2 - 1$.

- 6. Use (some form of) induction to prove that for $n \ge 1$, all Fibonacci numbers F_n are positive. The proof must use strong induction, and needs two base cases. Base case n = 1, $F_1 = 1 > 0$. Base case n = 2, $F_2 = F_1 + F_0 = 1 + 0 = 1 > 0$. Now, let $n \in \mathbb{N}$ with $n \geq 3$ be arbitrary, and assume that F_{n-1} and F_{n-2} are both positive. We have $F_n = F_{n-1} + F_{n-2}$, and the sum of two positive numbers is positive.
- 7. Solve the recurrence with initial conditions $a_0 = 3$, $a_1 = -1$ and relation $a_n = a_{n-1} + 6a_{n-2}$ (for $n \geq 2$).

This relation has characteristic polynomial $r^2 - r - 6 = (r - 3)(r + 2)$. We have two distinct roots, so the general solution is $a_n = A3^n + B(-2)^n$. Our initial conditions give $3 = a_0 = A3^0 + B(-2)^0 = A + B$, and $-1 = a_1 = A3^1 + B(-2)^1 = 3A - 2B$. The system of equations $\{3 = A + B, -1 = 3A - 2B\}$ has unique solution A = 1, B = 2, so our recurrence has specific solution $a_n = 3^n + 2(-2)^n$.

8. Let $a_n = n^{1.9} + n^{2.1}$. Prove or disprove that $a_n = O(n^2)$.

The statement is false. Let $n_0 \in \mathbb{N}$ and $M \in \mathbb{R}$ be arbitrary. Set $n = \max(n_0, \lceil M^{10} \rceil + 1)$. This choice of n guarantees that $n \ge n_0$ and that $n > M^{10}$. Taking the tenth root, we get $n^{0.1} > M$. Multiplying by n^2 , we get $n^{2.1} > Mn^2$. Now, we have $|a_n| = |n^{1.9} + n^{2.1}| = n^{1.9} + n^{2.1} > n^{2.1} > Mn^2 = M|b_n|$.

9. Prove that for all $x \in \mathbb{R}$ with $x \ge 0$, we must have $|x|^2 \le |x^2|$.

Let $x \in \mathbb{R}$ with $x \ge 0$. By definition of floor, $\lfloor x \rfloor \le x$. By Theorem 5.18 in the book, $\lfloor x \rfloor \ge \lfloor 0 \rfloor = 0$. We multiply both sides by $x \ge 0$ to get $\lfloor x \rfloor x \le x^2$, and by $\lfloor x \rfloor \ge 0$ to get $\lfloor x \rfloor^2 \le \lfloor x \rfloor x$. Combining, we get $\lfloor x \rfloor^2 \le x^2$. We now apply Theorem 5.18 from the book to get $\lfloor \lfloor x \rfloor^2 \rfloor \le \lfloor x^2 \rfloor$. Lastly, since $\lfloor x \rfloor^2 \in \mathbb{Z}$, we apply Theorem 5.19 from the book to get $\lfloor \lfloor x \rfloor^2 \rfloor = \lfloor x \rfloor^2 + \lfloor 0 \rfloor = \lfloor x \rfloor^2$. Putting it all together, we get $\lfloor x \rfloor^2 \le \lfloor x^2 \rfloor$.

10. Consider the recurrence with initial conditions $T_0 = 0$, $T_1 = 0$, $T_2 = 1$ and relation $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ (for $n \ge 3$). Prove that, for all $n \in \mathbb{N}_0$, we have $T_n < 2^n$. DO NOT TRY TO SOLVE THE RECURRENCE.

This question is similar to Thm 6.13. The proof must use strong induction, and needs three base cases: Base case n = 0, $T_0 = 0 < 1 = 2^0$. Base case n = 1, $T_1 = 0 < 2 = 2^1$. Base case n = 2, $T_2 = 1 < 4 = 2^2$.

Now, let $n \in \mathbb{N}$ with $n \ge 3$, and assume that $T_{n-1} < 2^{n-1}$, $T_{n-2} < 2^{n-2}$, and $T_{n-3} < 2^{n-3}$. We have $T_n = T_{n-1} + T_{n-2} + T_{n-3} < 2^{n-1} + 2^{n-2} + 2^{n-3} < 2^{n-1} + 2^{n-2} + 2^{n-3} + 2^{n-3} = 2^{n-1} + 2^{n-2} + 2^{n-2} = 2^{n-1} + 2^{n-1} = 2^n$.

NOTE: These are called "Tribonacci numbers". To solve the recurrence, one would need to find the nasty-ass roots of the characteristic polynomial $r^3 - r^2 - r - 1$ (which can be done, with some advanced methods).