MATH 245 S22, Exam 2 Solutions

1. Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive Existence Theorem
The Proof by Contradiction Theorem says that, for any propositions p, q, if $p \wedge \neg q \equiv F$, then $p \rightarrow q$ is true. The Nonconstructive Existence Theorem says that, if $(\forall x \in D, \neg P(x)) \equiv F$, then $\exists x \in D, P(x)$ is true.
2. Carefully define the following terms: Proof by Shifted Induction, Big Omega (Ω)

For some $s \in \mathbb{Z}$ and some predicate $P(x)$ (with domain \mathbb{Z}), to prove $\forall x \in \mathbb{Z}$ with $x \geq s, P(x)$ by Shifted Induction, we must (a) prove $P(s)$; and (b) prove $\forall x \in \mathbb{Z}$ with $x \geq s, P(x) \rightarrow$ $P(x+1)$. Given two sequences a_{n} and b_{n}, we say that $a_{n}=\Omega\left(b_{n}\right)$ if $\exists n_{0} \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \in \mathbb{N}$ with $n \geq n_{0}$, we have $M\left|a_{n}\right| \geq\left|b_{n}\right|$.
3. Let $x \in \mathbb{R}$. Use cases to prove that $|x-1|+|x+1| \geq x$.

METHOD 1: We break into three cases, based on whether $x<-1,-1 \leq x \leq 1$, or $1<x$.
Case $x<-1:|x-1|+|x+1|=-(x-1)-(x+1)=-2 x \geq 2>-1>x$.
Case $-1 \leq x \leq 1:|x-1|+|x+1|=-(x-1)+(x+1)=2 \geq 1 \geq x$.
Case $1<x:|x-1|+|x+1|=(x-1)+(x+1)=2 x>x$. (the last since $x+x>x+0)$.

METHOD 2: We break into three cases, based on whether $x<0,0 \leq x \leq 1$, or $1<x$.
Case $x<0:|x-1|+|x+1| \geq 0>x$. (the first since every absolute value is ≥ 0).
Case $0 \leq x \leq 1:|x-1|+|x+1| \geq 0+(x+1) \geq x$. (the first since $|x-1| \geq 0$).
Case $1<x$: same as in method 1 .
4. Prove or disprove: $\forall x \in \mathbb{Z},!y \in \mathbb{Z} \quad x=y^{3}$.

The statement is true. Let $x \in \mathbb{Z}$ be arbitrary. Suppose $y, z \in \mathbb{Z}$ with $x=y^{3}$ and $x=z^{3}$. Now $y^{3}=x=z^{3}$. Taking cube roots, we get $y=z$. [Note that cube roots are unique in \mathbb{R}]
5. Prove that for all $n \in \mathbb{N}$, we must have $\sum_{i=0}^{n}(2 i-1)=n^{2}-1$.

Proof by vanilla induction.
Base case is $n=1$: $\sum_{i=0}^{1}(2 i-1)=(2 \times 0-1)+(2 \times 1-1)=0$, while $1^{2}-1=0$.
Now, let $n \in \mathbb{N}$ be arbitrary, and assume that $\sum_{i=0}^{n}(2 i-1)=n^{2}-1$. Adding $2 n+1$ to both sides, we get $2 n+1+\sum_{i=0}^{n}(2 i-1)=n^{2}-1+2 n+1$. We simplify to get $\sum_{i=0}^{n+1}(2 i-1)=(n+1)^{2}-1$.
6. Use (some form of) induction to prove that for $n \geq 1$, all Fibonacci numbers F_{n} are positive. The proof must use strong induction, and needs two base cases.
Base case $n=1, F_{1}=1>0$. Base case $n=2, F_{2}=F_{1}+F_{0}=1+0=1>0$.
Now, let $n \in \mathbb{N}$ with $n \geq 3$ be arbitrary, and assume that F_{n-1} and F_{n-2} are both positive.
We have $F_{n}=F_{n-1}+F_{n-2}$, and the sum of two positive numbers is positive.
7. Solve the recurrence with initial conditions $a_{0}=3, a_{1}=-1$ and relation $a_{n}=a_{n-1}+6 a_{n-2}$ (for $n \geq 2$).
This relation has characteristic polynomial $r^{2}-r-6=(r-3)(r+2)$. We have two distinct roots, so the general solution is $a_{n}=A 3^{n}+B(-2)^{n}$. Our initial conditions give $3=a_{0}=A 3^{0}+B(-2)^{0}=A+B$, and $-1=a_{1}=A 3^{1}+B(-2)^{1}=3 A-2 B$. The system of equations $\{3=A+B,-1=3 A-2 B\}$ has unique solution $A=1, B=2$, so our recurrence has specific solution $a_{n}=3^{n}+2(-2)^{n}$.
8. Let $a_{n}=n^{1.9}+n^{2.1}$. Prove or disprove that $a_{n}=O\left(n^{2}\right)$.

The statement is false. Let $n_{0} \in \mathbb{N}$ and $M \in \mathbb{R}$ be arbitrary. Set $n=\max \left(n_{0},\left\lceil M^{10}\right\rceil+1\right)$. This choice of n guarantees that $n \geq n_{0}$ and that $n>M^{10}$. Taking the tenth root, we get $n^{0.1}>M$. Multiplying by n^{2}, we get $n^{2.1}>M n^{2}$. Now, we have $\left|a_{n}\right|=\left|n^{1.9}+n^{2.1}\right|=$ $n^{1.9}+n^{2.1}>n^{2.1}>M n^{2}=M\left|b_{n}\right|$.
9. Prove that for all $x \in \mathbb{R}$ with $x \geq 0$, we must have $\lfloor x\rfloor^{2} \leq\left\lfloor x^{2}\right\rfloor$.

Let $x \in \mathbb{R}$ with $x \geq 0$. By definition of floor, $\lfloor x\rfloor \leq x$. By Theorem 5.18 in the book, $\lfloor x\rfloor \geq\lfloor 0\rfloor=0$. We multiply both sides by $x \geq 0$ to get $\lfloor x\rfloor x \leq x^{2}$, and by $\lfloor x\rfloor \geq 0$ to get $\lfloor x\rfloor^{2} \leq\lfloor x\rfloor x$. Combining, we get $\lfloor x\rfloor^{2} \leq x^{2}$. We now apply Theorem 5.18 from the book to get $\left\lfloor\lfloor x\rfloor^{2}\right\rfloor \leq\left\lfloor x^{2}\right\rfloor$. Lastly, since $\lfloor x\rfloor^{2} \in \mathbb{Z}$, we apply Theorem 5.19 from the book to get $\left\lfloor\lfloor x\rfloor^{2}\right\rfloor=\lfloor x\rfloor^{2}+\lfloor 0\rfloor=\lfloor x\rfloor^{2}$. Putting it all together, we get $\lfloor x\rfloor^{2} \leq\left\lfloor x^{2}\right\rfloor$.
10. Consider the recurrence with initial conditions $T_{0}=0, T_{1}=0, T_{2}=1$ and relation $T_{n}=$ $T_{n-1}+T_{n-2}+T_{n-3}$ (for $n \geq 3$). Prove that, for all $n \in \mathbb{N}_{0}$, we have $T_{n}<2^{n}$.
DO NOT TRY TO SOLVE THE RECURRENCE.
This question is similar to Thm 6.13. The proof must use strong induction, and needs three base cases: Base case $n=0, T_{0}=0<1=2^{0}$. Base case $n=1, T_{1}=0<2=2^{1}$. Base case $n=2, T_{2}=1<4=2^{2}$.

Now, let $n \in \mathbb{N}$ with $n \geq 3$, and assume that $T_{n-1}<2^{n-1}, T_{n-2}<2^{n-2}$, and $T_{n-3}<2^{n-3}$. We have $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}<2^{n-1}+2^{n-2}+2^{n-3}<2^{n-1}+2^{n-2}+2^{n-3}+2^{n-3}=$ $2^{n-1}+2^{n-2}+2^{n-2}=2^{n-1}+2^{n-1}=2^{n}$.

NOTE: These are called "Tribonacci numbers". To solve the recurrence, one would need to find the nasty-ass roots of the characteristic polynomial $r^{3}-r^{2}-r-1$ (which can be done, with some advanced methods).

